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Abstract 

Two new results produced by FPT in the framework of the project are presented in this 
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method for creating accelerated durability tests for fuel cells, based on Markov chains. 
Moreover, a correction in the definition of the Dynamic Throughput [1] is also given 
in the Appendix A.  
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1 CONTEXT 

The present deliverable report was originally intended to be an updated final version of the deliverable 
D6.1 ([1] submitted M12) with additional data from H2Haul project [2] field demonstration and eventually 
other HD and mobility applications [3]. Despite all efforts from the IMMORTAL and the H2Haul project 
management to obtain such data, the approach was fruitless.  

In the meantime, during the project, a few notable results were obtained by FPT which were not originally 
foreseen during the preparation of the project proposal and therefore no relevant place was allocated in 
the list of deliverables. These results are:  

a) the creation of a statistical fuel cell degradation model for durability forecasting, accounting for 
the operating conditions of the fuel cell, and  

b) a new approach for the creation of load profiles for durability testing based on Markov chain 
stochastic processes. 

Given that no additional data was available to produce the present deliverable as planned, the consortium 
agreed to use this report to announce and share the afore-mentioned new results that may be of public 
interest and at the same time be shared as results of the IMMORTAL project.  

Further to the said announcement, the author wishes to make a correction in the definition of the dynamic 
throughput metric as introduced in [1]. This is done in the Appendix A (§6, p. 35).  

2 A FUEL CELL DEGRADATION MODEL FOR DURABILITY FORECASTING 

For the WP6 Tasks 6.2 (Projected performance and durability at system level) and 6.3 (Techno-economic 
validation of powertrain), the estimation of the fuel cells degradation is necessary for an assessment of a 
fuel cell truck’s performance and total cost of ownership throughout its use. For this purpose, Bosch would 
provide relevant information from Task 2.4 (MEA extrapolated lifetime prediction – model based and 
empirical) in the form of “0D polarisation curves and/or functional maps of the IMMORTAL stack based 
on the new MEA” [3]. However, FPT came soon to the realisation that a more comprehensive modelling 
tool would be necessary for a more realistic estimation of the stack’s behaviour and degradation as a 
function of its use history, which would be different under different vehicles, missions, operating 
conditions etc. (see also the modelling approach described in [1]).  

Under the new understanding and given the important amount of experimental data from the LPT 
campaigns performed by Bosch, the author proceeded to the creation of a model alternative to the semi-
empirical that Bosch employed. An outline of this modelling approach is the subject of the current section. 
The new model is based on the baseline stack which despite lower performance demonstrated better 
durability compared to other tested stacks [4]. 

2.1 Model structure 

2.1.1 Available data  

Bosch implemented several series of load profile testing (LPT) on short rainbow stacks throughout the 
project of typical duration of 1800 hours each [4]. Among them, the third series of LPT (LPT3) was selected 
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for the creation of FPT’s final version of degradation model1. Starting from LPT3 and on, Bosch employed 
the testing protocol developed by themselves using FPT’s stack load profile data. 

 
Figure 1. Average cell voltage vs. time every 360 hours from the beginning of testing. LPT3 data for the baseline fuel cells. 

 
Figure 2. Zoom in Figure 1 depicting degradation of average cell voltage at various voltage levels. LPT3 data for the baseline fuel cells. 

Figure 1 depicts experimental data (average cell voltage) based on LPT3 at different testing times, starting 
from t = 0 up to t = 1800 h with 360 h (15 days) time intervals.  Figure 2 zooms in at various voltage levels, 

 
1 Earlier modelling approaches using LPT1 measurements are not discussed here.  
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showing the evolution of degradation in more detail. The sampling times resolution is 1 s (1 Hz), resulting 
in about 6.5 million data points. Each measurement point includes stack and cell voltages, current (set 
and real values), pressures, temperatures, humidity, flowrates etc. Figure 3 depicts the evolution of the 
average cell voltage for the entire LPT3. Degradation can be distinguished, although less clearly.  

 
Figure 3. Evolution of the average cell voltage of the baseline stack for the entire LPT3. The gap between t=1.5 Ms and t = 1.85 Ms is probably 
due to an artefact in the data export. There was no shutdown and no influence on the subsequent calculations. 

2.1.2  “Shallow” neural network and features creation 

For fast calibration and running times as well as easier integration to future models that are often 
developed in platforms such as MATLAB™ and Simulink™, or even Excel, a linear modelling approach was 
selected. Moreover, in the development of statistical models it is generally a good practice to start from 
simple approaches and revert to more complex machine learning techniques in case the simpler 
approaches are not satisfactory.  

Among the available input data for the linear model after a first pre-processing phase, effectuated during 
the development of the first models with LPT1 data, several measurements were excluded as predictors 
(independent) variables because of their high correlation, which would not add value to the model and 
would induce high multicollinearity [5]. In the end a total of eight measured (8) predictors were used as 
input (Figure 4) including current density, pressure, temperature, humidity, and flowrates. Starting from 
the eight inputs, a series of features was created from the basic predictors2 ([φX]i in Figure 4), which, 
multiplied by respective constants (weights) and added as terms of a linear model provide the model 
output. Among the introduced features, the current density dynamic throughput as defined in the 
Appendix A (§6, p. 35) and two features accounting for the dynamic behaviour of the stack were included.  

This approach, which is schematically depicted in Figure 4 recalls the operation of neural networks with 
the eight measured predictors being the input layer and the features stemming from the basic predictors 

 
2 Features being essentially functions of the inputs. This process is also called “feature engineering”. 
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being the hidden layer. Thus, the term “shallow neural network” or “shallow learning” is sometimes used 
alternatively.  

In the entire modelling campaign, where several models were tried, the number of terms varied, typically 
from 77 up to 173 terms. The final selected model had 93 terms.  

The output of the model is the average cell voltage of all baseline cells used in the rainbow stack. The 
model was calibrated for current density in the range 0.08 – 1.50 A/cm2, under the assumption that values 
beyond that region would be of no practical use for the purpose of the model (fuel cell vehicle simulation 
for WP6 deliverables D6.3 and D6.4 [1]). Furthermore, with this approach strong non-linear behaviours of 
the stack, which would make the modelling process even more challenging, were also avoided.   

 

 
Figure 4. Linear model or "shallow" neural network. X is the array of inputs. The features φ are functions of elements of X. (schematic inspired 
by [6]). The number of terms (features or predictor variables) is p. 

Dynamic throughput as predictor of degradation 

Since the scope of the produced model is the forecasting of the fuel cell stack’s degradation as a function 
of its operation conditions, relevant stressors needed to be included. Typical stressors for degradation are 
the operating conditions already included in the model input (temperature, humidity, pressure) as well as 
the usage of the fuel cell. One metric that is often used for the latter, especially within the context of 
integrators’ industry, is the time of operation. However, this is not accounting for the real operating 
conditions and was therefore rejected as factor in the model3. Alternatively, the current density 
throughput and its dynamic throughput were considered (Appendix A). During the development of the 
various models, they were both very highly correlated, and inclusion of both in the model would lead to 
unsuccessful models. Given that it is well-known that the operation dynamics have an impact on the fuel 
cell’s durability, the dynamic throughput was finally used.  

The impact of start-up and shutdowns, related to the air front at the anode, was not considered in this 
model. 

 
3 There have been attempts to include time in early experimentations, but they were finally rejected. 

b1 [φX]1b0 b2 [φX]2 bp-1 [φX]p-1
……….
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X input
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2.1.3 Sub-sampling and robustness of statistical model 

One issue that may arise when developing models with many factors, is a potentially high multicollinearity 
[5]. While collinearity of factors is unavoidable in complex models, what is important is that:  

a) the regression method retains its capability to calculate the coefficients (weights) of the model4, 
and 

b) the model remains robust to small variations either of the input or the coefficients,  

Furthermore, it is desired that the model is immune to outliers as much as possible. 

A method to address all the above points and render the model more robust, is the creation of multiple 
models with the use of re- and sub-sampling [7], and this is what was applied in this case too. Figure 5, 
depicts the steps that were followed for the calculation of the model’s calculation. Firstly, the data set 
was split randomly to train and test data. 70% of the train data were randomly reshuffled 101 times and 
they were used each time to calculate the model’s coefficient. The final set of coefficients was the average 
of the 101 sets, while the original test data (20% of the original data) were used for model validation. An 
example of such validation with test data is shown in Figure 8 (histogram). 

 
Figure 5. Sub- and re-sampling of data. The initial data were split randomly to Train (80%) and Test (20%) data sets. The Train data were not 
used in their entirety for the model calibration. 70% of them was randomly selected and used to train the model. This was done 101 times, 
producing 101 different sets of coefficients. The 101 coefficients were averaged to produce the final set of the model coefficients. The Test 
data are used to validate the model.  

2.1.4 Calculation of uncertainty / confidence interval 

An important advantage of linear models is the existence of relatively straightforward formulas that help 
calculate the uncertainty of the prediction of the model. This applies to multi-dimensional models as well 
as one-dimensional models. The reader is referred to good textbooks in linear regression such as [8] for 
the relevant background. The formula used in this application for the calculation of the variance of the 
value predicted from the model is the following: 

 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} = 𝑀𝑆𝐸 [1 + ℎ ] (2.1) 

 
4 Collinearity reduces the capability of the modelling solver to solve ordinary least squares equations and may result to 
erroneous calculations of the coefficients.  

Data (100%)

Train  (80%) Test  (20%)

Subsample 1  (70% of Train)

random shuffle random shuffle

random shuffle

Subsample 2  (70% of Train)

…
Subsample 101  (70% of Train)

model coefficients 1

model coefficients 101

model coefficients 2

model training

model training

model training

averaging final model coefficients
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where: 

 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} is the variance of the model predicted value. 
 𝑀𝑆𝐸 is the mean squared error from the model training5 
 ℎ  is the “hat” value of the predicted new data point. 
 ℎ is the average “hat value” of the data points used for the model training 

“Hat values” are described and explained in the Appendix B (§7, p.36). 

NOTE: This equation is an adaptation of the original equation given in [8]. The rationale for this adaptation 
is expressed in the Appendix B, were further explanations and definitions are provided. 

Once the variance is calculated for each predicted point, it’s 95% confidence interval can be estimated as:  

 ±2𝑠 ∙ {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛}  (2.2) 

2.2 Selection criteria for forecasting model selection 

As mentioned in §2.1.2, many models were tried until a satisfactory was chosen, a linear model with p=93 
coefficients, or 92 predictor features plus a constant. When there are many models available, relevant 
criteria must be set for the final selection. In the current work attention was drawn to the following: 

 How well the model fits the available data 
 How well the model extrapolates from a part of the data to the entire available data set 
 What is the precision when the model extrapolates beyond the measured horizon.  

The next paragraphs elaborate on the above three criteria. 

2.2.1 Fitting to the training and test data 

Model fitting can be assessed with many different criteria. Typical and very intuitive is the direct graphical 
comparison between measurements and model output, such as the one shown in Figure 6 with the time 
evolution of the average cell voltage, where a good fitting is demonstrated, mainly in the less dynamic 
conditions. Alternatively, the voltage versus the current density can be juxtaposed as is done in Figure 7. 
In both cases, the difference between data and model (residual) can be assessed qualitatively and 
marginally quantitatively. 

 
5 In this application the MSE from the test data was used, which essentially was equal to the training MSE 
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Figure 6. Overview of model fitting in time series with consecutive zooming-in.  

 
Figure 7. Average cell voltage vs. current density. Due to the large amount of data, only a random selection of 25000 data points is shown. 

A histogram of the residuals, such as the one depicted in Figure 8, is a more precise quantitative 
assessment of the fitting giving a different perspective of the spread of the model’s deviation. It is 
noteworthy that the histogram of Figure 8 is showing fit to the test data, i.e., the data reserved for model 
validation and not the ones used for training.  
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Figure 8. Regression residuals histogram for the test data set (i.e., validation data set) and table with main fitting statistics. The red arrows 
are showing the ±2σ (95%) confidence interval. 

 

 
Figure 9. Coefficient of determination (R2) of the model, for the 101 train data sets (blue, right), the test (red, left) and the entire data set 
(green, middle). 
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Figure 10. Mean error and 95% confidence trends for various data batches. 
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Figure 8 is also showing that the distribution of the error is not a normal (Gaussian) distribution, rather it 
seems to be a Laplace or another distribution from the symmetric exponential family6,7.  The same Figure 
is providing a table with the main statistics. What is noteworthy is that because the distribution is not 
normal, the 31.8% error does not correspond to ±1σ (±one standard deviation), but much less, while the 
95% and 99% errors do correspond to ±2σ and ±3σ respectively. The very thin and long tails apparently 
represent the deviations in the fuel cell dynamics.  

In some cases, the coefficient of determination – also known as “R-squared”, expressing the fraction of 
the data that are explained by the model − is a metric of interest. Figure 9 presents a histogram with the 
R2 values for all fitted cases, that is, the 101 train data sets, the validation test data, and the entire data 
set. Even in the worst case, the test data value has an R2 of about 0.988.  

2.2.1.1 Residual trends 

An important qualitative technique to test the fit of a model is to observe the evolution of the residual 
over time. This way any trends, such as increases or decreases in time, or patterns, such as cyclic 
behaviours, may be quickly perceived. In a good fit, there should be no correlation between time and 
residuals and the error should look random. 

Given that the amount of data is so large that such a graph would be too confusing, the trend was 
examined in batches of 25000, 50000, 125000 and 250000 data points, where the arithmetic mean of the 
error for each batch is plotted. Figure 10 is showing a series of graphs with the residual trends of the 
selected regression model. When the batches are large, no trend is shown, rather the error, leading to 
the conclusion that asymptotically the model is not influenced by any seasonality. However, when the 
sampling is refined, especially for 50000 and 25000 data points, the errors are periodic, with a high peak 
of about 5 mV, a little higher than the standard deviation is repeated. This means that there is a subset of 
the data where the model is not as successful as for the rest.  

2.2.1.2 Forecasting of degradation 

An interesting check that can be done is how well the model fits degradation specifically. This is examined 
in the table of Figure 11, which is comparing the voltage drop (in Volts) from t=0 to t=1800 in the real 
baseline stack and for a selection of five models, and current densities. The models are generally 
underestimating degradation. One reason for this may be that even degradation seems to have a 
stochastic behaviour, and it is not monotonically increasing, as can be clearly seen in the inset pictures of 
Figure 2.  

Emphasis is mainly given to the three last columns of the table, that correspond to current densities higher 
than 0.65 A/cm2, and that have more practical value for a fuel cell truck application. It is repeated here 
that the model was trained in the region 0.08 – 1.5 A/cm2, and therefore the first two columns should not 
be expected to have as a good fit.  

The selected model is #2 in the table and Figure 12 is showing how it is replicating Figure 11, and forecasts 
degradation. The operating conditions that were assumed in the simulation are described in §2.3.  

 
6 No statistical test was performed for confirmation of the assertion or the calculation of the distribution parameters. 
7 If this is the case, then the result of least squares is not providing the maximum likelihood estimator; the minimum sum of 
absolute errors (L-1 distance) should be used instead.  
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Figure 11. Fitting of various models on degradation trends. The table is showing the voltage drop in Volts at various current density levels (see 
also Figure 2) from t=0 to t=1800 h. The selected model is #2. 

 
Figure 12. Degradation forecasting by the model #2 (see also Figure 11). The operating conditions as defined in §2.3 (Figure 15) were used. 

2.2.2 Behaviour in extrapolation from partial to full data 

Once the fit of the model is assessed, using appropriate criteria from the statistics literature, a forecasting 
model needs to be tested as to whether it can forecast the data trends. In the current work, this was done 
by training on part of the available data and then observing how the fit evolves for the rest towards the 
future.  
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Figure 13 is depicting models that were trained with data of about 900 hours and then let extrapolate up 
to the end of testing. During training all of them had similarly good fitting behaviour. However, 
extrapolation beyond the training area would lead to unacceptable deviations.  

The case at the bottom right of Figure 13, emphasised with a red frame, corresponds to the selected 
model.   

 
Figure 13. Extrapolation from partial training. Among the 6 different models, the one at the bottom right has the best forecasting behaviour. 
All models had similar fitting precision on the test data during training. 

2.2.3 Precision in extrapolation to the future 

The last criterion for model selection that was established in this work was to assess how the model 
extrapolates beyond the end of testing, in the future. Since there are no relevant data to compare, the 
assessment was done on the precision of the model as measured with the confidence interval of the 
forecasting. A model with narrower confidence interval is preferrable. 

In Appendix B it is explained that the prediction error depends on the “hat values” of the predicted 
outputs, and they are changing with every model. This is demonstrated in Figure 16. In this Figure, the 
output of four different models – the numbers correspond to the ones in the table of Figure 11 – for times 
t=0 and t=30000 h along with their confidence intervals are juxtaposed. While at t=0, the prediction errors 
are very similar, the ones for the extrapolation to the far future vary considerably. It is also notable that 
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the error is changing for different voltage levels, given that the corresponding points have different 
“distances” (hat values) from the train data centroid. 

The selected model #2 is on the top right corner in red frame. A 20% degradation (136 mV) is forecast at 
the maximum 1.08 A/cm2 after 30000 hours.  

 
Figure 14. Confidence intervals of voltage forecasting in LPT1 at t=0 and t=30000 h, for four models of the table in Figure 11. 

2.3 Operating conditions and behaviour of the model at different load profiles 

Once the candidate regression models have been assessed and one among them is selected according to 
the criteria of §2.2, and before its use in different missions one more step needs to be taken. Although 
the model is flexible enough to have different operating conditions as input (pressures, flowrates, 
temperatures, and relative humidity, it is preferable to determine the operating conditions as a function 
of the current density, simplifying this way future applications. 

For the selected model this was done by using the operating conditions at the test bench as reference, 
under the assumption that these conditions are the most appropriate, if not optimised, for the specific 
cell. Figure 15 is showing how the operating conditions are correlated – to one degree or another – to the 
current density. The yellow line depicts the sought function that was finally defined. The same function 
was used to produce the result of Figure 12.  

After the definition of the operating conditions, the model was used to simulate the baseline cell’s output 
for the four load profiles that were shared with the IMMORTAL project partners at the end of the first 
year of the project [1]. The simulation was done for t=0 as well as t=30000 hours. The results are depicted 
in Figure 16 and they show varied cell degradation as well as confidence intervals. For example, run #197, 
which is much smoother than the other three, degrades the cell comparatively little while the uncertainty 
is quite higher. Apparently, the operating points extrapolated to 30000 hours deviate from the centroid 
of the training data much more than for the other cases. Run #241 has the narrowest confidence interval. 
As in the cases of Figure 14, the uncertainty is changing with the current density. 



   

 
 

 

 

IMMORTAL D6.2: A fuel cell degradation model for durability testing and an alternative approach for load profile creation 
for durability testing  

18

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking 
(now Clean Hydrogen Partnership) under grant agreement No 101006641. This Joint 
Undertaking receives support from the European Union’s Horizon 2020 Research and 

Innovation programme, Hydrogen Europe and Hydrogen Europe Research. 

 
Figure 15. Determination of inputs for the regression model. Black: mission data, red: polarisation curve data. The yellow lines are the defined 
model inputs as functions of the current density. 

 

 
Figure 16. Voltage forecasting at t=0 and t=30000 h of the selected final model for simulation runs #3, #197, #241 and #252. 
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3 AN ALTERNATIVE APPROACH FOR LOAD PROFILE CREATION FOR DURABILITY TESTING 

3.1 The importance of experimental data quality for the creation of statistical models and the 
extraction of information in general 

It is well known that good data quality is of determining importance for any statistical work, including 
statistical inference and modelling for behaviour forecasting. This is the reason that the methodologies of 
Experimental Design have been developed and extended literature has been published (e.g., [9]). 

This applies to the creation of models for this work’s application too. Figure 17 depicts the two different 
testing protocols applied for LPT1 & 2 and for LPT3 & 4. On the left and top are the initial load profiles, 
based on “sweeping” of the current density at a specific frequency with differentiation only on the low 
voltage level (LL – red circles) and the hold time at high voltage (green circles) [1]. At the bottom right of 
the same figure, the new protocol is shown, based on simplification of the load profiles #3, #197, #241 
and #282 (Figure 16) [4]. 

 

 
Figure 17. Two different testing protocols producing data of different quality ([1] & [4]). 

Both LPT approaches have their pros and cons. LPT1 & 2 present good variability in the current density, 
due to the current “sweeping”. However, the current ramps have only two values, and those are very 
close to each other, which does not allow better understanding of the impact of current slope on the fuel 
cell behaviour and durability. Furthermore, the hold times are very limited. On the other hand, LPT3 & 4, 
which are based on real-life data have improved hold times and current ramps, while, due to their 
processing and simplification the current values are constrained at specific levels, the ones shown in red 
arrows.  

Yet, when developing a model, variability in the data is necessary in order to: 

 Reduce correlations between factors, i.e., the correlations between the model coefficients.  
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 Broaden the range of application for the model, that is when the spectrum of the data is broad, 
the model’s capability to extrapolate improves. 

 Increase the possibility to try different modelling approaches.  

This applies to any type of model, physical, empirical or semi-empirical, other mathematical approach or 
even in look-up-tables (LUT) form. Sometimes the form of the data set may be restrictive for specific types 
of models. This was the case for the first models created based on LPT1 data. They could not be calibrated 
with the LPT3 data and new needed to be created. 

Given this experience, the general knowledge of the relation between data quality and modelling, as well 
as the observation on how fuel cell scientists are developing LPT (load profile tests) and ASTs (accelerated 
stress tests), which are also very limited, the author is proposing in this section a different approach, 
where randomisation is “injected” into the characteristics of an LPT, in a way that the new LPT that is 
created has a broader spectrum of value while maintaining features that the designer of the experiment 
desires. This is done with the use of Markov chains, which are memory-less stochastic processes.  

Furthermore, given that the new LPT that is produced with the proposed method is stressing the fuel cell 
considerably more than its normal use, it can be considered an Accelerated Durability Test (ADT8). This is 
the term that will be used from this point on.  

3.2 Markov chain-based Accelerated Durability Testing (MCADT) 

3.2.1 Principles  

It is out of scope to present Markov chains here. A first understanding can be obtained on the relevant 
Wikipedia lemma [11] or other Web pages found on the Internet. It is only mentioned that a Markov chain 
is a discrete stochastic process9 where the state of a system – in this case the current density of a fuel cell 
– at discrete time intervals is a random variable, determined in a matrix defining the probability of 
transitioning to the next value given the previous value. 

This can be better understood by the example of Table 1 showing such a transition matrix. By knowing 
the current density value at time ti, say 0.7 A/cm2, the probability to transition to another current density 
level at the next time instance ti+1 is given by the elements of the row that corresponds to the “before” 
value. In the example, the probability that the fuel cell will have current density 0.8 A/cm2 at ti+1 is 10%, 
while the probability that it will remain 0.7 A/cm2 is 75%. The sum of probabilities for each row must be 
100%. 

Once the transition matrix is defined, a stochastic process may be created with the use or random number 
generator. Figure 18 and Figure 19 are presenting such examples.  

It is up to the experimenter to define the desired transition times Δt = ti+1 – ti. In the examples here, Δt = 
1s was chosen, equal to the time resolution of the LPT data of §2.1.1 (p. 5). With the Δt known, desired 
average hold times may be determined especially if specific load profiles need to be approximated, 
according to the following formula, upon which Table 2 is based.  

 
8 The author encountered the term in the conference presentation [10] for the first time. 
9 There are also continuous Markov chains which do not relate here.  
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  (3.1) 

Indeed, from the diagonal of the transition matrix (Table 1) one can see that the average hold time for 0.6 
A/cm2 is 50 s, that can be seen in the graphs of Figure 18 and Figure 19. 

Finally, the current slopes can be configured like the hold times. Table 3 shows that the relative 
frequencies for slopes ±0.1 A/cm2/s and ±0.2 A/cm2/s, i.e., the relative probabilities for all transitions 
except the diagonal are set to specific values. Their sum is 90%, giving a 10% margin for other transitions 
to take place with equal probability.  

Table 1. Transition matrix for the creation of a stochastic process defining the load profile of a fuel cell. 

 

Table 2. Mean residence time (hold time) as a function of the transition probability at the diagonal of the transition matrix, for Δt = 1s. 

 

Table 3. Probabilities set for four values of the current density slope. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0 0.80000 0.08000 0.03000 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563 0.00563
0.1 0.06250 0.75000 0.10000 0.03750 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333
0.2 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.3 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.4 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.5 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.6 0.00014 0.00014 0.00014 0.00014 0.00200 0.00500 0.98000 0.00800 0.00300 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014
0.7 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.8 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179
0.9 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029 0.00400 0.01000 0.96000 0.01600 0.00600 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029
1 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179

1.1 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179 0.00179 0.00179
1.2 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.01000 0.02500 0.90000 0.04000 0.01500 0.00071 0.00071 0.00071 0.00071
1.3 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179 0.00179 0.00179
1.4 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.00071 0.01000 0.02500 0.90000 0.04000 0.01500 0.00071 0.00071
1.5 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.00179 0.02500 0.06250 0.75000 0.10000 0.03750 0.00179
1.6 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.00143 0.02000 0.05000 0.80000 0.08000 0.03000
1.7 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.00417 0.02500 0.06250 0.75000 0.10000
1.8 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.00813 0.02000 0.05000 0.80000

cu
rr

en
t d

en
si

ty
 b

ef
or

e

current density after

Transition probability 0.1 0.2 0.5 0.6 0.75 0.8 0.9 0.95

Mean residence time [s] 1.111 1.25 2 2.5 4 5 10 20

Transition probability 0.96 0.98 0.99 0.995 0.996 0.9967 0.998 0.999

Mean residence time  [s] 25 50 100 200 250 300 500 1000

Slope [A/cm2/s] -0.2 -0.1 +0.1 +0.2

Relative frequency 0.1 0.25 0.4 0.15

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑚𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
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Figure 18. Upper: Markov chain stochastic process created with the transition matrix of Table 1. Lower: zoom-in on the first 600 s. 
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Figure 19. Other examples of MCADT profiles produced with the transition matrix of Table 1. Lower: zoom-in on the first 600 s. 

3.2.2 Operating conditions in an MCADT 

Up to this point only the current density has been discussed. However, it is important to define the 
behaviour of the other operating conditions. Rules such the ones shown in Figure 15 may be used. 
Generally, it is up to the designer of the experiment to decide how the test bench should respond given 
the dynamics of the load profile and the test bench’s capability. In order to avoid starvation phenomena, 
it would probably be practical either to apply a feed-forward algorithm on the test bench automation 
system, or to predetermine the entire load profile and based on it predetermine the stream flows, 
pressures, temperatures and relevant humidity, again taking into account the response times of the test 
bench.  

3.2.3 Steady-state (asymptotic) probabilities and minimum number of cycles10 

Since MCADT are stochastic processes, the defined hold times must be seen as average values obtained 
asymptotically during running. It would be therefore of interest to understand what a minimum necessary 
number of transitions should be run – equivalently a minimum duration of the measurement campaign – 
where: 

a) the expected hold times are asymptotically observed, and 
b) all possible transitions are expected to appear 

Point a) can be answered as follows. The steady-state probabilities of a Markov chain are calculated by 
solving the equation: 

 𝜋 = 𝜋𝑃 (3.2) 

 
10 The author would like to acknowledge Prof. Andrea Casalegno who brought up this topic in a conference presentation of this 
approach [12]. 
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where 𝜋 is the array of steady-state probabilities and 𝑃 is the transition matrix. The transition matrix of 
Table 1 has the steady-state probabilities shown in Table 4: 

Table 4. Top row: current density levels [A/cm2]. Bottom row: steady state probabilities of the transition matrix of Table 1.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

0.011 0.014 0.018 0.022 0.024 0.026 0.346 0.029 0.03 0.189 0.031 0.031 0.077 0.03 0.074 0.028 0.032 0.021 0.019 

 

By multiplying the latter values with the diagonal of the transition matrix we obtain the absolute 
probabilities that each state (current density level) is repeated at the next transition. These values are 
given in Table 5: 

Table 5. Top row: current density levels [A/cm2]. Bottom row: absolute probabilities of the transition matrix’ diagonal.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

0.009 0.010 0.013 0.015 0.017 0.019 0.322 0.021 0.021 0.172 0.022 0.022 0.066 0.022 0.064 0.020 0.024 0.015 0.015 

 

The smallest probability in the table is 0.87%, the probability of having 0 A/cm2. By inversing and 
multiplying with the transition time (Δt = 1 s) we get the average time interval between appearances of 0 
A/cm2 τi=0 ≈ 115 s. It is then a question of how many times this interval should be repeated to reach an 
average of hold time equal to 5 s that Table 1 defines. This is a somewhat arbitrary decision. If 10 
repetitions are chosen, then the necessary time is 1151. If the repetitions are 100 the time raises to 11512 
s. 

Similarly point b) above can be answered. This time the array of Table 4 must be multiplied with all 
columns of Table 1. The result is shown in Table 6. The minimum absolute probability is 0.311% leading 
to an average interval between repetitions τi=0 ≈ 32205 s. it is then up to the experimenter’s discretion to 
decide the eventual number of repetitions as discussed before.   

Table 6. Absolute probabilities of all transitions in Table 1. 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0 0.009 9E-04 3E-04 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05 6E-05

0.1 8E-04 0.01 0.001 5E-04 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05
0.2 4E-04 0.001 0.013 0.002 7E-04 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05 3E-05
0.3 4E-05 5E-04 0.001 0.015 0.002 8E-04 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05
0.4 4E-05 4E-05 6E-04 0.001 0.017 0.002 9E-04 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05
0.5 4E-05 4E-05 4E-05 6E-04 0.002 0.019 0.002 9E-04 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05
0.6 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.322 0.003 1E-03 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05
0.7 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.021 0.003 0.001 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05
0.8 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.021 0.003 0.001 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05
0.9 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.172 0.003 0.001 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05
1 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.022 0.003 0.001 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05

1.1 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.022 0.003 0.001 5E-05 5E-05 5E-05 5E-05 5E-05
1.2 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.066 0.003 0.001 5E-05 5E-05 5E-05 5E-05
1.3 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.022 0.003 0.001 5E-05 5E-05 5E-05
1.4 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.064 0.003 0.001 5E-05 5E-05
1.5 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 5E-05 7E-04 0.002 0.02 0.003 0.001 5E-05
1.6 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 4E-05 6E-04 0.002 0.024 0.002 9E-04
1.7 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 8E-05 5E-04 0.001 0.015 0.002
1.8 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 1E-04 4E-04 9E-04 0.015
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3.2.4 Application: transition matrices for the stack load profiles selected in Task 6.1 [1] 

An interesting field to apply MCADT as described above are the four load profiles for stack testing 
produced in Task 6.1 of this work package (Figure 20) and later used to establish the LPT protocol in this 
project. 

 

 
Figure 20. The four load profiles that were selected after simulations and shared with the WP2 partners [1] to produce new LPTs. The time 
scales vary. 

The four current density profiles where statistically analysed, and the respective Markov chain transition 
matrices were produced (Table 7 up to Table 10). 

In the transition matrices below, one can notice two issues. The first is that the transition probabilities are 
constrained to a small number of diagonals, leaving an important number of possible transitions with zero 
probability. This is against the approach of the method where an as broad as possible spectrum of 
transition values is desired. The second is that due to the difference in the time and current density 
resolution of the matrices and the original simulation data11, transitions are aggregated, mainly in the 
matrix diagonal, leaving a very small probability for transition to other current densities. If the stochastic 
processes are deployed as described there, they will be led to behaviours quite different from the original 
load profiles.  

Figure 21 is depicting the case #3 at three different time scales. Due to the small probability to transition 
from 1.0 to 0.9 A/cm2, the process is “trapped” for long times at the maximum value. 

Run #241 in Figure 22 is an extreme case where once the stack reaches 1.2 A/cm2, it never leaves this 
state. 

 

 
11 The simulation data were extracted with 10 ms time resolution and continuous values for the current density. 

#3 #282#241#197
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Table 7. Transition matrix for run #3 with current density resolution 0.1 A/cm2 and time resolution 1s. 

 
 
Table 8. Transition matrix for run #197 with current density resolution 0.1 A/cm2 and time resolution 1s. 

 
 
Table 9. Transition matrix for run #241 with current density resolution 0.1 A/cm2 and time resolution 1s. 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.60000 0.00000 0.40000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.00187 0.00269 0.99190 0.00230 0.00124 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.3 0.02647 0.00051 0.03174 0.88796 0.02724 0.02608 0.00000 0.00000 0.00000 0.00000 0.00000
0.4 0.02656 0.00061 0.00061 0.03792 0.87565 0.02825 0.03040 0.00000 0.00000 0.00000 0.00000
0.5 0.00000 0.03353 0.00038 0.00076 0.04363 0.83749 0.04858 0.03563 0.00000 0.00000 0.00000
0.6 0.00000 0.00775 0.02855 0.00066 0.00000 0.04073 0.80412 0.08765 0.03054 0.00000 0.00000
0.7 0.00000 0.00000 0.02430 0.00477 0.00023 0.00045 0.02498 0.82357 0.09650 0.02520 0.00000
0.8 0.00000 0.00000 0.00000 0.02439 0.00268 0.00000 0.00000 0.01153 0.83222 0.10158 0.02761
0.9 0.00000 0.00000 0.00000 0.00000 0.00959 0.01178 0.00027 0.00027 0.00548 0.83475 0.13785
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00019 0.99981

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0 0.42857 0.57143 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.00000 0.99914 0.00072 0.00014 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.00000 0.00000 0.99927 0.00000 0.00073 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.3 0.00000 0.00000 0.00000 0.99782 0.00000 0.00218 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.4 0.00000 0.00000 0.00000 0.00000 0.99787 0.00000 0.00213 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.00000 0.00000 0.00000 0.00000 0.00000 0.99829 0.00000 0.00171 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99856 0.00000 0.00144 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99844 0.00000 0.00156 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99779 0.00000 0.00221 0.00000 0.00000 0.00000 0.00000 0.00000
0.9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99657 0.00000 0.00343 0.00000 0.00000 0.00000 0.00000
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99441 0.00000 0.00559 0.00000 0.00000 0.00000

1.1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99536 0.00000 0.00464 0.00000 0.00000
1.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99691 0.00000 0.00309 0.00000
1.3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00039 0.00000 0.00058 0.99595 0.00212 0.00096
1.4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00289 0.99339 0.00372
1.5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00015 0.99985

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0 0.42857 0.57143 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.00208 0.99539 0.00253 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.02180 0.00151 0.93794 0.03875 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.3 0.01961 0.00449 0.00776 0.92034 0.04779 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.4 0.00000 0.01022 0.00349 0.00349 0.95618 0.02661 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.00000 0.00000 0.00482 0.00221 0.00181 0.97711 0.01405 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.6 0.00000 0.00000 0.00000 0.00413 0.00236 0.00207 0.97608 0.01536 0.00000 0.00000 0.00000 0.00000 0.00000
0.7 0.00000 0.00000 0.00000 0.00000 0.00312 0.00156 0.00052 0.98545 0.00935 0.00000 0.00000 0.00000 0.00000
0.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00051 0.00017 0.00253 0.99190 0.00489 0.00000 0.00000 0.00000
0.9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00122 0.00049 0.00585 0.98805 0.00439 0.00000 0.00000
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00534 0.00000 0.02244 0.95513 0.01175 0.00534

1.1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01644 0.00137 0.00411 0.93973 0.03836
1.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
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Table 10. Transition matrix for run #282 with current density resolution 0.1 A/cm2 and time resolution 1s. 

 
 

 
Figure 21. Run case #3 deployed as a Markov chain stochastic process according to the transition matrix of Table 7. 

 
Figure 22. Run case #241 deployed as a Markov chain stochastic process according to the transition matrix of Table 9. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0 0.42857 0.57143 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.00112 0.99764 0.00124 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.00578 0.00108 0.98345 0.00969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.3 0.00536 0.00089 0.00238 0.98467 0.00670 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.4 0.00000 0.00121 0.00086 0.00199 0.99360 0.00234 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.00000 0.00000 0.00105 0.00038 0.00369 0.99187 0.00301 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.6 0.00000 0.00000 0.00000 0.00084 0.00051 0.00287 0.99071 0.00507 0.00000 0.00000 0.00000 0.00000 0.00000
0.7 0.00000 0.00000 0.00000 0.00000 0.00096 0.00032 0.00184 0.98991 0.00697 0.00000 0.00000 0.00000 0.00000
0.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00155 0.00000 0.00106 0.98752 0.00987 0.00000 0.00000 0.00000
0.9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00158 0.00000 0.00106 0.98500 0.01236 0.00000 0.00000
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00133 0.00000 0.00089 0.98445 0.01259 0.00074

1.1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00246 0.00037 0.00012 0.97956 0.01748
1.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.99997
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In order to remedy this issue, the transition matrices are transformed according to the following formula: 

 𝑝 , = 𝑝 , (1 − 𝛼) +  (3.3) 

where: 

 𝑝 ,  is the new probability of transition from state i to state j, 
 𝑝 ,  is the original probability of transition from state i to state j, 
 is a factor named here “acceleration factor” with 0 ≤ 𝛼 ≤ 1 
 𝑁 is the number of transitions in the transition matrix 

It is easily shown that ∑ 𝑝 , = 1 for all j. 

This transformation is adding probabilities to all transitions in the matrix. At the same time it is reducing 
the values that originally were >0 by the factor (1 – α). The higher the factor 𝛼, the more abrupt the 
transitions and the smaller the hold times in the stochastic processes. This can be seen in Figure 23, where 
three different acceleration factors are compared (α =0.01, 0.02 and 0.05).  

Finally, Figure 24 up to Figure 27 are depicting the four run cases produced as stochastic processes from 
the same transition matrices with acceleration factor α = 0.05.  
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Figure 23. Run case #3 deployed as a Markov chain stochastic process according to the transition matrix of Table 7 transformed with 
acceleration factor α=0.01 (top), α=0.02 (middle), α=0.05 (bottom). 
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Figure 24. Run case #3 deployed as a Markov chain stochastic process according to the transition matrix of Table 7 and acceleration factor α 
= 0.05. 

 

 
Figure 25. Run case #197 deployed as a Markov chain stochastic process according to the transition matrix of Table 8 and acceleration factor 
α = 0.05. 
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Figure 26. Run case #241 deployed as a Markov chain stochastic process according to the transition matrix of Table 9 and acceleration factor 
α = 0.05.  

 

 
Figure 27. Run case #282 deployed as a Markov chain stochastic process according to the transition matrix of Table 10 and acceleration factor 
α = 0.05. 

3.2.5 Application II: Throughput and dynamic throughput in the MCADT 

An interesting property of the MCADT is that the dynamic throughput of the current density does not 
correlate strongly with the throughput. Indeed, Figure 28 is juxtaposing the throughput and the dynamic 
throughput for 38 MCADT profiles created based on the transition matrix of Table 1. The duration of each 
was 10 hours. Although there is a linear relation between the two magnitudes, a linear regression is not 
explaining all variation. The coefficient of determination (R2) is only 0.321. Moreover, the Pearson 
correlation coefficient is 0.567. 

This property has an important impact on designing experiments using MCADT. By changing the 
probabilities in the MCADT transition matrix as discussed in §3.2.1 an experimenter can differentiate the 
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throughput of a series of measurements. By creating new series of measurement points, as done for 
Figure 28, each new series will have a similar throughput and a very loosely correlated dynamic 
throughput. This means that no excessive additional effort needs to be put to create variability on the 
dynamic throughput. Its variability is inherent.  

 

 
Figure 28. Current density dynamic throughput vs. throughput. 
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4 CONCLUSION AND FUTURE WORK 

In this report two results of interest, from both industrial and academic perspectives, are presented. The 
first is a statistical modelling approach for forecasting of fuel cells’ degradation. The second is an 
alternative approach for accelerated testing which, when ran, offers a richer spectrum of information on 
how the various stressors impact performance and degradation. 

As far as the discussed modelling approach is concerned, the more important learnings are not the models 
themselves, rather the discussed criteria on how one should distinguish good and less good models. It 
was shown how one can be easily misled and in the end use very erroneous models leading to very wrong 
conclusions. Selecting the appropriate model is as much an art as developing the models themselves and 
further work on the relevant criteria must be done and discussed.  

Beyond the latter, other work that can be done in modelling are technical improvements such as: 

 Further exploration of modelling possibilities whether within the family of linear models or other 
machine learning techniques, 

 Refinement of the models by elimination of statistically not significant coefficients, 
 Use of alternative optimisation approaches for linear models, such as Ridge, Lasso, Least Angle, 

etc., 
 Apply L1 optimisation, i.e., minimisation of the sum of absolute residuals, rather than their 

squares, which would be more appropriate for the distribution of the residual. 

As regards the Markov chain accelerated durability testing, it lacks experimental trials and its drawbacks 
in practice need to be examined and discussed. Challenges in the laboratory implementation are 
expected, mainly due to starvation that may be induced if the oxidant/fuel are not sufficient during the 
intense and randomised cycle dynamics. For this reason, the experiments need to be carefully designed. 
Furthermore, we need to understand the impact of different configurations of the transition matrix on 
the duration of accelerated tests and the quality of the learnings, including the development of statistical 
models.  

In general, both topics have considerable potential for improvement and learning that will hopefully help 
us understand fuel cells degradation better and contribute to the optimisation of their use especially in 
their industrial and commercial use. 
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6 APPENDIX A:  CORRECTION IN THE DEFINITION OF DYNAMIC THROUGHPUT 

In the Appendix A of D6.1, the first deliverable of WP6 [1], the dynamic throughput was defined as an 
intensive magnitude, i.e. a magnitude that does not depend on the duration of the load profile [13]. This 
was senseful for uses such as the comparison of load profiles of different duration, as done in D6.1. 
However, another intensive magnitude was available and finally used in the selection process for load 
profiles, namely the normalised dynamic throughput, that is, the dynamic throughput normalised over 
the average value of the considered magnitude. 

Furthermore, an extensive definition of the dynamic throughput, i.e., a definition that depends on the 
duration of the mission is very useful when one wishes to relate the dynamics of a load profile with the 
fuel cell’s degradation. In this case the longer the duration of the testing, the longer the impact of the 
dynamic behaviour – expressed by its metric, the dynamic throughput – on the fuel cell’s degradation and 
generally its durability. This approach was extensively applied for the creation and use of the degradation 
model of section 2 (A fuel cell degradation model for durability forecasting).  

On the other hand, the metric as defined in the Appendix A of D6.1 [1] may be considered its specific 
version, i.e., the dynamic throughput per time unit.  

Therefore, the definitions in the following frame are proposed. In the case of the normalised dynamic 
throughput, the absolute value of the magnitude is used, in order to extend its use to batteries or other 
applications where the magnitude, e.g., the current, may have negative values.  

Ttot is the total time duration of the measurement. 

  (A.1) 

 

  (A.2) 

 

  (A.3) 

 
  

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑑

𝑑𝑡
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∙ 𝑑𝑡

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
1

𝑇

𝑑

𝑑𝑡
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∙ 𝑑𝑡 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∫

𝑑
𝑑𝑡

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∙ 𝑑𝑡

∫ |𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒| ∙ 𝑑𝑡
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7 APPENDIX B:  ADAPTATION OF THE FORMULA CALCULATING THE VARIANCE OF VALUES PREDICTED FROM 

THE MODEL 

According to [8], the following formula should be used for the calculation of the variance of a value 
predicted from the model:  

 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} = 𝑀𝑆𝐸 +  𝑠 𝑌 = 𝑀𝑆𝐸 [1 + 𝛷 (𝛷 𝛷) 𝛷 ] (B.1) 

where: 

 𝑌  is a value predicted from the model.  
 𝑠 𝑌  is the variance of the sampling distribution of 𝑌 . 
 𝛷  is the array of the features’ values (1xp matrix) used in the regression for the calculation of 𝑌  

(see also §2.1.2 and Figure 4). 
 𝛷 is the Nxp matrix of the N data points with p features used for the model training. 
 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} is the variance of the model predicted value. 
 𝑀𝑆𝐸 is the mean squared error from the model training12 

The term 𝛷 (𝛷 𝛷) 𝛷  is also called “hat value” of the new point: 

ℎ = 𝛷 (𝛷 𝛷) 𝛷  

and it is a measure of the “distance” of a predicted value from the centroid of the training data and 
consequently a measure of extrapolation from the model training region. Figure 29 is a graphical depiction 
of this notion. 

Therefore, equation (B.1) can be rewritten as: 

 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} = 𝑀𝑆𝐸 [1 + ℎ ] (B.2) 

For the training data, the “hat matrix” is the NxN matrix defined as: 

𝐻 = 𝛷(𝛷 𝛷) 𝛷  

Its diagonal elements are the hat values of the measurement points used for the model training. They 
have the following properties: 

 0 ≤ ℎ ≤ 1   

ℎ = 𝑝 

ℎ =
𝑝

𝑁
 

were:  

 𝑝 is the number of features of the model and 
 ℎ is the average “hat value” of all data points used for the model training 

 
12 In this application the MSE from the test data was used, which essentially was equal to the training error 
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Figure 29. The "hat value" is a measure of a predicted model's extrapolation. Schematic adapted from [8], p.231. 

One issue with equation (B.2) is that it is taking into consideration only the absolute value of the hat 
values. This means that, if the number of training points is high, as is the case in this application, where 
the order of magnitude of the average hat value ℎ is 1x10-5, any extrapolation from the model, even if it 
had a hat value 100 times higher than the average of the training points, i.e.: ℎ = 100ℎ, the impact of 
this extrapolation to the prediction variance would be minimal. This does not make practical sense and it 
underestimates considerably the prediction error under high extrapolation. 

For this reason, the author proceeded to the following adaptation of the formula:  

 𝑠 {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛} = 𝑀𝑆𝐸 [1 + ℎ ] (B.3) 

which is finally presented in §2.1.4, p.9. This is based on the idea that the 𝑀𝑆𝐸  is an average 
expressing the average distance (hat value ℎ) of all training data points from their training centroid. The 
author maintains that the original calculation of the variance according to equation (B.1) is erroneous, 
namely the assumption that the variance of the distribution of any given 𝑌  at 𝛷 = 𝛷( ), given input 
𝑋 = 𝑋  is constant and equal to  𝑀𝑆𝐸  and it is independent of the distance to the training centroid 
([8], p.58). Equation (B.3) is an approximation attempting to reflect the impact of the distance of a new 
data point from the training centroid.  

Practically, this adaptation has the advantage to be accounting for the order of magnitude of the hat 
values. That is, if the ℎ  is in the order of magnitude of the training points (order of magnitude of ℎ), then 
the fraction has smaller impact compared to the term in brackets. If the extrapolation is relatively high 
not in absolute rather in relative terms, i.e., if ℎ  is 100 times larger than ℎ, then the prediction variance 
if mainly impacted by the fraction in (B.3).  
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Finally, to be noted that this approach is consistent with the general knowledge that the confidence band 
in linear regression is hyperbolic because it is proportional to the square root of the distance from the 
training centroid (Figure 30). 

  
Figure 30. The confidence interval (orange) is due to the uncertainty in the regression coefficients. Here an example of a simple linear 
regression with variations on the intercept and the slope. The interval is hyperbolic as a function to the distance of x from the training data 
centroid. 
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